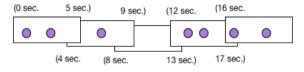

Bases de données documentaires et distribuées, http://b3d.bdpedia.fr

Fenetrage avec Flink



Le fenêtrage avec Flink

Flink permet de découper les flux en fenêtres. Trois types de fenêtres possibles.

Fenêtres fixes (TumblingWindow)

Fenêtres glissantes (SlidingWindow)

Fenêtres de session (SessionWindow)

Opérations sur les fenêtres

Attention à bien évaluer les ressources nécessaires! Il peut être nécessaire d'accumuler complètement le contenu d'une fenêtre avant de déclencher l'agrégation.

- application incrémentale d'une fonction Reduce() combinant deux éléments de la fenêtre
- application incrémentale d'une fonction Fold() ajoutant un élément de la fenêtre à un accumulateur
- enfin, toute fonction s'appliquant à l'ensemble des éléments de la fenêtre, et qui ne peut pas s'appliquer incrémentalement.

La troisième est potentiellement consomatrice de mémoire.

Un premier exemple de fenêtre

Au préalable, lancer notre générateur de flux sur le port 9000.

On cumule les entiers de la fenêtre, toutes les 5 secondes.

```
4 D > 4 B > 4 E > 4 E > E 990
```

Avec fenêtre glissante

La fenêtre couvre 10 secondes, et est évaluée toutes les 5 secondes.

Le windowAll() indique qu'il n'y a pas de partitionnement.

```
4 D > 4 B > 4 E > 4 E > 9 9 0
```

Dernier exemple : avec partitionnement

L'exemple suivant partitionne le flux d'entiers en 2 : les pairs et les impairs.

```
import org.apache.flink.streaming.api.windowing.assigners._;
val stream = senv.socketTextStream("localhost", 9000, '\n')
case class MonEntier (classe: Int, valeur: Int)
val w = stream.map (\{x => x.toInt\}).map(\{x => MonEntier (x % 2, x)\})
               .kevBv("classe")
               .window(TumblingProcessingTimeWindows.of(Time.seconds(5)))
               .fold("Liste: ") { (acc, v) => acc + " | " + v.valeur }
               .print()
senv.execute(" ")
```

Le niveau de parallélisme autorisé par ce fenêtrage n'est que de deux.

```
4 D > 4 B > 4 E > 4 E > 9 9 0
```

En conclusion

Le fenêtrage est un outil puissant pour effectuer l'analyse de flux (construction incrémentale de modèles).

Deux obstacles à prendre en compte :

- Des calculs non incrémentaux sur de grandes fenêtres requièrent beaucoup de mémoire
- Le patitionnement de flux limite les possibilités de parallélisme.

À faire : exercices montrant le traitement de documents structurés (cf. support)

